Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Huub Kooijman

Bijvoet Center for Biomolecular Research, Department of Crystal and Structural Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands

Correspondence e-mail: h.kooijman@chem.uu.nl

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.003 Å R factor = 0.023 wR factor = 0.060 Data-to-parameter ratio = 19.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Hexakis(*N*-methyl-1*H*-imidazole- κN^3)manganese(II) dibromide dihydrate

The manganese complex of the title compound, $[Mn(C_4H_6-N_2)_6]Br_2 \cdot 2H_2O$, is located on a crystallographic inversion centre. The anions and solvent molecules form a hydrogenbonded cluster of formulation $Br_2(H_2O)_2$ with graph set $R_4^2(8)$.

Received 13 September 2006 Accepted 14 September 2006

Comment

The hexakis(*N*-methylimidazole)manganese(II) complex has been reported in crystal structures with phenylthiolate, phenylperthiolate (Krautscheid *et al.*, 1993) and octasulfide (Dev *et al.*, 1991) as counter-ions. In this paper, the crystal structure of the Mn complex, (I), with bromide as counter-ion and a cocrystallized water molecule is reported. The Mn^{II} ion is located on a crystallographic inversion centre in an octahedral coordination environment. The maximum deviation of the N-Mn-N angles from ideal values is 2.6° (Table 1).

The crystal packing consists of a checker-board alternation of Mn complexes and $Br_2(H_2O)_2$ clusters in the *bc* plane (see Fig. 2). The bromide ions and water molecules are joined by hydrogen bonds in a cluster which has the primary graph set $R_4^2(8)$ (Bernstein *et al.*, 1995). Geometric details of the hydrogen bonds are given in Table 2.

Experimental

Crystals of (I) were obtained as a side product in a study on the stereochemical influence of the ligand on the structure of manganese(II) complexes (Godbole *et al.*, 2005).

Crystal data $[Mn(C_4H_6N_2)_6]Br_2 \cdot 2H_2O$ Z = 2 $M_r = 743.42$ $D_r = 1.490 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Mo $K\alpha$ radiation a = 8.1137 (10) Å $\mu = 2.85 \text{ mm}^{-1}$ b = 13.6259 (10) ÅT = 150 Kc = 16.057 (2) Å Block, colourless $\beta = 110.993 (11)^{\circ}$ $0.40 \times 0.40 \times 0.20 \text{ mm}$ V = 1657.4 (3) Å

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

Data collection

Nonius KappaCCD area-detector diffractometer φ scans and ω scans with κ offset Absorption correction: multi-scan (*MULABS* in *PLATON*; Spek, 2003) $T_{\min} = 0.309, T_{\max} = 0.568$

Refinement

Table 1

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.060$ S = 1.033820 reflections 196 parameters H atoms treated by a mixture of independent and constrained refinement 42360 measured reflections 3820 independent reflections 3440 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.055$ $\theta_{\text{max}} = 27.5^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0269P)^{2} + 1.05P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

 $D \cdot \cdot \cdot A$

 $D - H \cdot \cdot \cdot A$

175 (3)

176 (2)

Selected geometric parameters (Å, °).			
Mn1-N3	2.2546 (14)	Mn1-N23	2.2670 (16)
Mn1-N13	2.2949 (15)		
N3-Mn1-N13	92.60 (5)	N3-Mn1-N23 ⁱ	88.43 (5)
N3-Mn1-N23	91.57 (5)	N13-Mn1-N23	89.94 (6)
N3-Mn1-N13 ⁱ	87.40 (5)	N13-Mn1-N23 ⁱ	90.07 (6)

Symmetry code: (i) -x + 2, -y, -z + 1.

Table 2		
Hydrogen-bond	l geometry (Å, °	°).
$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$

H atoms bonded to C were placed in calculated positions (C–H = 0.95–0.98 Å), riding on their carrier atoms. The methyl groups were allowed to rotate around the N–Me bond. The coordinates of the water H atoms were determined from a difference Fourier map and were freely refined. $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm water O} {\rm and methyl C})$ or $1.2U_{\rm eq}({\rm imidazole C})$.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS86* (Sheldrick, 1985); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

Crystals were kindly provided by Drs Elisabeth Bouwman and Meenal Godbole, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden, The Netherlands.

References

Dev, S., Ramli, E., Rauchfuss, T. B. & Wilson, S. R. (1991). Inorg. Chem. 30, 2514–2519.

Figure 1

Molecular structure of the title compound (I), with displacement ellipsoids drawn at the 30% probability level. H atoms bonded to C atoms have been omitted for clarity. [Symmetry code: (i) 2 - x, -y, 1 - z.]

Figure 2

View of the crystal packing down a. Dashed lines indicate hydrogen bonds. H atoms bonded to C atoms have been omitted.

Godbole, M. D., Hotze, A. C. G., Hage, R., Mills, A. M., Kooijman, H., Spek, A. L. & Bouwman, E. (2005). *Inorg. Chem.* 44, 9253–9266.

- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Krautscheid, U., Dev, S., Krautscheid, H., Paul, P. P., Wilson, S. R. & Rauchfuss, T. B. (1993). Z. Naturforsch. Teil B, 48, 653–658.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Sheldrick, G. M. (1985). *SHELXS86*. University of Göttingen, Germany. Sheldrick, G. M. (1997). *SHELXL97*. University of Göttingen, Germany. Spek, A. L. (2003). *J. Appl. Cryst.* **36**, 7–13.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.